The page you navigated to does not exist, so we brought you to the closest page to it.
flytekitplugins.spark.schema
flytekitplugins.spark.schema
Implements how SparkDataFrame should be read using the open method of FlyteSchema
class SparkDataFrameSchemaReader (
from_path: str,
cols: typing. Optional[typing. Dict[str, type]],
fmt: < enum 'SchemaFormat' > ,
)
Parameter
Type
from_path
str
cols
typing.Optional[typing.Dict[str, type]]
fmt
<enum 'SchemaFormat'>
def all (
kwargs,
) -> pyspark. sql. dataframe. DataFrame
Parameter
Type
kwargs
**kwargs
def iter (
kwargs,
) -> typing. Generator[~ T, NoneType, NoneType]
Parameter
Type
kwargs
**kwargs
Property
Type
Description
column_names
from_path
Implements how SparkDataFrame should be written to using open method of FlyteSchema
class SparkDataFrameSchemaWriter (
to_path: str,
cols: typing. Optional[typing. Dict[str, type]],
fmt: < enum 'SchemaFormat' > ,
)
Parameter
Type
to_path
str
cols
typing.Optional[typing.Dict[str, type]]
fmt
<enum 'SchemaFormat'>
def write (
dfs: pyspark. sql. dataframe. DataFrame,
kwargs,
)
Parameter
Type
dfs
pyspark.sql.dataframe.DataFrame
kwargs
**kwargs
Property
Type
Description
column_names
to_path
Transforms Spark DataFrame’s to and from a Schema (typed/untyped)
def SparkDataFrameTransformer ()
def assert_type (
t: Type[T],
v: T,
)
Parameter
Type
t
Type[T]
v
T
def from_binary_idl (
binary_idl_object: Binary,
expected_python_type: Type[T],
) -> Optional[T]
This function primarily handles deserialization for untyped dicts, dataclasses, Pydantic BaseModels, and attribute access.`
For untyped dict, dataclass, and pydantic basemodel:
Life Cycle (Untyped Dict as example):
python val -> msgpack bytes -> binary literal scalar -> msgpack bytes -> python val
(to_literal) (from_binary_idl)
For attribute access:
Life Cycle:
python val -> msgpack bytes -> binary literal scalar -> resolved golang value -> binary literal scalar -> msgpack bytes -> python val
(to_literal) (propeller attribute access) (from_binary_idl)
Parameter
Type
binary_idl_object
Binary
expected_python_type
Type[T]
def from_generic_idl (
generic: Struct,
expected_python_type: Type[T],
) -> Optional[T]
TODO: Support all Flyte Types.
This is for dataclass attribute access from input created from the Flyte Console.
Note:
This can be removed in the future when the Flyte Console support generate Binary IDL Scalar as input.
Parameter
Type
generic
Struct
expected_python_type
Type[T]
def get_literal_type (
t: typing. Type[pyspark. sql. dataframe. DataFrame],
) -> flytekit. models. types. LiteralType
Converts the python type to a Flyte LiteralType
Parameter
Type
t
typing.Type[pyspark.sql.dataframe.DataFrame]
def guess_python_type (
literal_type: LiteralType,
) -> Type[T]
Converts the Flyte LiteralType to a python object type.
Parameter
Type
literal_type
LiteralType
def isinstance_generic (
obj,
generic_alias,
)
Parameter
Type
obj
generic_alias
def to_html (
ctx: FlyteContext,
python_val: T,
expected_python_type: Type[T],
) -> str
Converts any python val (dataframe, int, float) to a html string, and it will be wrapped in the HTML div
Parameter
Type
ctx
FlyteContext
python_val
T
expected_python_type
Type[T]
def to_literal (
ctx: flytekit. core. context_manager. FlyteContext,
python_val: pyspark. sql. dataframe. DataFrame,
python_type: typing. Type[pyspark. sql. dataframe. DataFrame],
expected: flytekit. models. types. LiteralType,
) -> flytekit. models. literals. Literal
Converts a given python_val to a Flyte Literal, assuming the given python_val matches the declared python_type.
Implementers should refrain from using type(python_val) instead rely on the passed in python_type. If these
do not match (or are not allowed) the Transformer implementer should raise an AssertionError, clearly stating
what was the mismatch
Parameter
Type
ctx
flytekit.core.context_manager.FlyteContext
python_val
pyspark.sql.dataframe.DataFrame
python_type
typing.Type[pyspark.sql.dataframe.DataFrame]
expected
flytekit.models.types.LiteralType
def to_python_value (
ctx: flytekit. core. context_manager. FlyteContext,
lv: flytekit. models. literals. Literal,
expected_python_type: typing. Type[pyspark. sql. dataframe. DataFrame],
) -> ~ T
Converts the given Literal to a Python Type. If the conversion cannot be done an AssertionError should be raised
Parameter
Type
ctx
flytekit.core.context_manager.FlyteContext
lv
flytekit.models.literals.Literal
expected_python_type
typing.Type[pyspark.sql.dataframe.DataFrame]
Property
Type
Description
is_async
name
python_type
This returns the python type
type_assertions_enabled
Indicates if the transformer wants type assertions to be enabled at the core type engine layer