2.0.0b1

flyte.io

IO data types

This package contains additional data types beyond the primitive data types in python to abstract data flow of large datasets in Union.

Directory

Classes

Class Description
DataFrame This is the user facing DataFrame class.
DataFrameDecoder Helper class that provides a standard way to create an ABC using.
DataFrameEncoder Helper class that provides a standard way to create an ABC using.
DataFrameTransformerEngine Think of this transformer as a higher-level meta transformer that is used for all the dataframe types.
Dir A generic directory class representing a directory with files of a specified format.
File A generic file class representing a file with a specified format.

Methods

Method Description
lazy_import_dataframe_handler()

Methods

lazy_import_dataframe_handler()

def lazy_import_dataframe_handler()

flyte.io.DataFrame

This is the user facing DataFrame class. Please don’t confuse it with the literals.StructuredDataset class (that is just a model, a Python class representation of the protobuf).

class DataFrame(
    val: typing.Optional[typing.Any],
    uri: typing.Optional[str],
    metadata: typing.Optional[literals_pb2.StructuredDatasetMetadata],
    kwargs,
)
Parameter Type
val typing.Optional[typing.Any]
uri typing.Optional[str]
metadata typing.Optional[literals_pb2.StructuredDatasetMetadata]
kwargs **kwargs

Methods

Method Description
all()
column_names()
columns()
deserialize_dataframe()
from_dict()
from_json()
iter()
open() Load the handler if needed.
serialize_dataframe()
set_literal() A public wrapper method to set the DataFrame Literal.
to_dict()
to_json()

all()

def all()

column_names()

def column_names()

columns()

def columns()

deserialize_dataframe()

def deserialize_dataframe(
    info,
) -> DataFrame
Parameter Type
info

from_dict()

def from_dict(
    d,
    dialect,
)
Parameter Type
d
dialect

from_json()

def from_json(
    data: typing.Union[str, bytes, bytearray],
    decoder: collections.abc.Callable[[typing.Union[str, bytes, bytearray]], dict[typing.Any, typing.Any]],
    from_dict_kwargs: typing.Any,
) -> ~T
Parameter Type
data typing.Union[str, bytes, bytearray]
decoder collections.abc.Callable[[typing.Union[str, bytes, bytearray]], dict[typing.Any, typing.Any]]
from_dict_kwargs typing.Any

iter()

def iter()

open()

def open(
    dataframe_type: Type[DF],
)

Load the handler if needed. For the use case like: @task def t1(df: DataFrame): import pandas as pd df.open(pd.DataFrame).all()

pandas is imported inside the task, so panda handler won’t be loaded during deserialization in type engine.

Parameter Type
dataframe_type Type[DF]

serialize_dataframe()

def serialize_dataframe()

set_literal()

def set_literal(
    expected: types_pb2.LiteralType,
)

A public wrapper method to set the DataFrame Literal.

This method provides external access to the internal _set_literal method.

Parameter Type
expected types_pb2.LiteralType

to_dict()

def to_dict()

to_json()

def to_json(
    encoder: collections.abc.Callable[[typing.Any], typing.Union[str, bytes, bytearray]],
    to_dict_kwargs: typing.Any,
) -> typing.Union[str, bytes, bytearray]
Parameter Type
encoder collections.abc.Callable[[typing.Any], typing.Union[str, bytes, bytearray]]
to_dict_kwargs typing.Any

Properties

Property Type Description
literal None
metadata None
val None

flyte.io.DataFrameDecoder

Helper class that provides a standard way to create an ABC using inheritance.

class DataFrameDecoder(
    python_type: Type[DF],
    protocol: Optional[str],
    supported_format: Optional[str],
    additional_protocols: Optional[List[str]],
)

Extend this abstract class, implement the decode function, and register your concrete class with the DataFrameTransformerEngine class in order for the core flytekit type engine to handle dataframe libraries. This is the decoder interface, meaning it is used when there is a Flyte Literal value, and we have to get a Python value out of it. For the other way, see the DataFrameEncoder

Parameter Type
python_type Type[DF]
protocol Optional[str]
supported_format Optional[str]
additional_protocols Optional[List[str]]

Methods

Method Description
decode() This is code that will be called by the dataset transformer engine to ultimately translate from a Flyte Literal.

decode()

def decode(
    flyte_value: literals_pb2.StructuredDataset,
    current_task_metadata: literals_pb2.StructuredDatasetMetadata,
) -> Union[DF, typing.AsyncIterator[DF]]

This is code that will be called by the dataset transformer engine to ultimately translate from a Flyte Literal value into a Python instance.

Parameter Type
flyte_value literals_pb2.StructuredDataset
current_task_metadata literals_pb2.StructuredDatasetMetadata

Properties

Property Type Description
protocol None
python_type None
supported_format None

flyte.io.DataFrameEncoder

Helper class that provides a standard way to create an ABC using inheritance.

class DataFrameEncoder(
    python_type: Type[T],
    protocol: Optional[str],
    supported_format: Optional[str],
)

Extend this abstract class, implement the encode function, and register your concrete class with the DataFrameTransformerEngine class in order for the core flytekit type engine to handle dataframe libraries. This is the encoding interface, meaning it is used when there is a Python value that the flytekit type engine is trying to convert into a Flyte Literal. For the other way, see the DataFrameEncoder

Parameter Type
python_type Type[T]
protocol Optional[str]
supported_format Optional[str]

Methods

Method Description
encode() Even if the user code returns a plain dataframe instance, the dataset transformer engine will wrap the.

encode()

def encode(
    dataframe: DataFrame,
    structured_dataset_type: types_pb2.StructuredDatasetType,
) -> literals_pb2.StructuredDataset

Even if the user code returns a plain dataframe instance, the dataset transformer engine will wrap the incoming dataframe with defaults set for that dataframe type. This simplifies this function’s interface as a lot of data that could be specified by the user using the

TODO: Do we need to add a flag to indicate if it was wrapped by the transformer or by the user?

Parameter Type
dataframe DataFrame
structured_dataset_type types_pb2.StructuredDatasetType

Properties

Property Type Description
protocol None
python_type None
supported_format None

flyte.io.DataFrameTransformerEngine

Think of this transformer as a higher-level meta transformer that is used for all the dataframe types. If you are bringing a custom data frame type, or any data frame type, to flytekit, instead of registering with the main type engine, you should register with this transformer instead.

def DataFrameTransformerEngine()

Methods

Method Description
assert_type()
dict_to_dataframe()
encode()
from_binary_idl() If the input is from flytekit, the Life Cycle will be as follows:.
get_decoder()
get_encoder()
get_literal_type() Provide a concrete implementation so that writers of custom dataframe handlers since there’s nothing that.
guess_python_type() Converts the Flyte LiteralType to a python object type.
isinstance_generic()
iter_as()
open_as()
register() Call this with any Encoder or Decoder to register it with the flytekit type system.
register_for_protocol() See the main register function instead.
register_renderer()
to_html() Converts any python val (dataframe, int, float) to a html string, and it will be wrapped in the HTML div.
to_literal() Converts a given python_val to a Flyte Literal, assuming the given python_val matches the declared python_type.
to_python_value() The only tricky thing with converting a Literal (say the output of an earlier task), to a Python value at.

assert_type()

def assert_type(
    t: Type[DataFrame],
    v: typing.Any,
)
Parameter Type
t Type[DataFrame]
v typing.Any

dict_to_dataframe()

def dict_to_dataframe(
    dict_obj: typing.Dict[str, str],
    expected_python_type: Type[T] | DataFrame,
) -> T | DataFrame
Parameter Type
dict_obj typing.Dict[str, str]
expected_python_type Type[T] | DataFrame

encode()

def encode(
    sd: DataFrame,
    df_type: Type,
    protocol: str,
    format: str,
    structured_literal_type: types_pb2.StructuredDatasetType,
) -> literals_pb2.Literal
Parameter Type
sd DataFrame
df_type Type
protocol str
format str
structured_literal_type types_pb2.StructuredDatasetType

from_binary_idl()

def from_binary_idl(
    binary_idl_object: literals_pb2.Binary,
    expected_python_type: Type[T] | DataFrame,
) -> T | DataFrame

If the input is from flytekit, the Life Cycle will be as follows:

Life Cycle: binary IDL -> resolved binary -> bytes -> expected Python object (flytekit customized (propeller processing) (flytekit binary IDL) (flytekit customized serialization) deserialization)

Example Code: @dataclass class DC: sd: StructuredDataset

@workflow def wf(dc: DC): t_sd(dc.sd)

Note:

  • The deserialization is the same as put a structured dataset in a dataclass, which will deserialize by the mashumaro’s API.

Related PR:

Parameter Type
binary_idl_object literals_pb2.Binary
expected_python_type Type[T] | DataFrame

get_decoder()

def get_decoder(
    df_type: Type,
    protocol: str,
    format: str,
) -> DataFrameDecoder
Parameter Type
df_type Type
protocol str
format str

get_encoder()

def get_encoder(
    df_type: Type,
    protocol: str,
    format: str,
)
Parameter Type
df_type Type
protocol str
format str

get_literal_type()

def get_literal_type(
    t: typing.Union[Type[DataFrame], typing.Any],
) -> types_pb2.LiteralType

Provide a concrete implementation so that writers of custom dataframe handlers since there’s nothing that special about the literal type. Any dataframe type will always be associated with the structured dataset type. The other aspects of it - columns, external schema type, etc. can be read from associated metadata.

Parameter Type
t typing.Union[Type[DataFrame], typing.Any]

guess_python_type()

def guess_python_type(
    literal_type: types_pb2.LiteralType,
) -> Type[DataFrame]

Converts the Flyte LiteralType to a python object type.

Parameter Type
literal_type types_pb2.LiteralType

isinstance_generic()

def isinstance_generic(
    obj,
    generic_alias,
)
Parameter Type
obj
generic_alias

iter_as()

def iter_as(
    sd: literals_pb2.StructuredDataset,
    df_type: Type[DF],
    updated_metadata: literals_pb2.StructuredDatasetMetadata,
) -> typing.AsyncIterator[DF]
Parameter Type
sd literals_pb2.StructuredDataset
df_type Type[DF]
updated_metadata literals_pb2.StructuredDatasetMetadata

open_as()

def open_as(
    sd: literals_pb2.StructuredDataset,
    df_type: Type[DF],
    updated_metadata: literals_pb2.StructuredDatasetMetadata,
) -> DF
Parameter Type
sd literals_pb2.StructuredDataset
df_type Type[DF]
updated_metadata literals_pb2.StructuredDatasetMetadata

register()

def register(
    h: Handlers,
    default_for_type: bool,
    override: bool,
    default_format_for_type: bool,
    default_storage_for_type: bool,
)

Call this with any Encoder or Decoder to register it with the flytekit type system. If your handler does not specify a protocol (e.g. s3, gs, etc.) field, then

Parameter Type
h Handlers
default_for_type bool
override bool
default_format_for_type bool
default_storage_for_type bool

register_for_protocol()

def register_for_protocol(
    h: Handlers,
    protocol: str,
    default_for_type: bool,
    override: bool,
    default_format_for_type: bool,
    default_storage_for_type: bool,
)

See the main register function instead.

Parameter Type
h Handlers
protocol str
default_for_type bool
override bool
default_format_for_type bool
default_storage_for_type bool

register_renderer()

def register_renderer(
    python_type: Type,
    renderer: Renderable,
)
Parameter Type
python_type Type
renderer Renderable

to_html()

def to_html(
    python_val: typing.Any,
    expected_python_type: Type[T],
) -> str

Converts any python val (dataframe, int, float) to a html string, and it will be wrapped in the HTML div

Parameter Type
python_val typing.Any
expected_python_type Type[T]

to_literal()

def to_literal(
    python_val: Union[DataFrame, typing.Any],
    python_type: Union[Type[DataFrame], Type],
    expected: types_pb2.LiteralType,
) -> literals_pb2.Literal

Converts a given python_val to a Flyte Literal, assuming the given python_val matches the declared python_type. Implementers should refrain from using type(python_val) instead rely on the passed in python_type. If these do not match (or are not allowed) the Transformer implementer should raise an AssertionError, clearly stating what was the mismatch

Parameter Type
python_val Union[DataFrame, typing.Any]
python_type Union[Type[DataFrame], Type]
expected types_pb2.LiteralType

to_python_value()

def to_python_value(
    lv: literals_pb2.Literal,
    expected_python_type: Type[T] | DataFrame,
) -> T | DataFrame

The only tricky thing with converting a Literal (say the output of an earlier task), to a Python value at the start of a task execution, is the column subsetting behavior. For example, if you have,

def t1() -> Annotated[StructuredDataset, kwtypes(col_a=int, col_b=float)]: … def t2(in_a: Annotated[StructuredDataset, kwtypes(col_b=float)]): …

where t2(in_a=t1()), when t2 does in_a.open(pd.DataFrame).all(), it should get a DataFrame with only one column.

+—————————–+—————————————–+————————————–+ | | StructuredDatasetType of the incoming Literal | +—————————–+—————————————–+————————————–+ | StructuredDatasetType | Has columns defined | [] columns or None | | of currently running task | | | +=============================+=========================================+======================================+ | Has columns | The StructuredDatasetType passed to the decoder will have the columns | | defined | as defined by the type annotation of the currently running task. | | | | | | Decoders should then subset the incoming data to the columns requested. | | | | +—————————–+—————————————–+————————————–+ | [] columns or None | StructuredDatasetType passed to decoder | StructuredDatasetType passed to the | | | will have the columns from the incoming | decoder will have an empty list of | | | Literal. This is the scenario where | columns. | | | the Literal returned by the running | | | | task will have more information than | | | | the running task’s signature. | | +—————————–+—————————————–+————————————–+

Parameter Type
lv literals_pb2.Literal
expected_python_type Type[T] | DataFrame

Properties

Property Type Description
name None
python_type None
This returns the python type
type_assertions_enabled None
Indicates if the transformer wants type assertions to be enabled at the core type engine layer

flyte.io.Dir

A generic directory class representing a directory with files of a specified format. Provides both async and sync interfaces for directory operations. Users are responsible for handling all I/O - the type transformer for Dir does not do any automatic uploading or downloading of files.

The generic type T represents the format of the files in the directory.

Example: ```python # Async usage from pandas import DataFrame data_dir = Dir DataFrame

# Walk through files
async for file in data_dir.walk():
    async with file.open() as f:
        content = await f.read()

# Sync alternative
for file in data_dir.walk_sync():
    with file.open_sync() as f:
        content = f.read()
```
class Dir(
    data: Any,
)

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

Parameter Type
data Any

Methods

Method Description
construct()
copy() Returns a copy of the model.
dict()
download() Asynchronously download the entire directory to a local path.
download_sync() Synchronously download the entire directory to a local path.
exists() Asynchronously check if the directory exists.
exists_sync() Synchronously check if the directory exists.
from_local() Asynchronously create a new Dir by uploading a local directory to the configured remote store.
from_local_sync() Synchronously create a new Dir by uploading a local directory to the configured remote store.
from_orm()
get_file() Asynchronously get a specific file from the directory.
get_file_sync() Synchronously get a specific file from the directory.
json()
list_files() Asynchronously get a list of all files in the directory (non-recursive).
list_files_sync() Synchronously get a list of all files in the directory (non-recursive).
model_construct() Creates a new instance of the Model class with validated data.
model_copy() !!! abstract “Usage Documentation”.
model_dump() !!! abstract “Usage Documentation”.
model_dump_json() !!! abstract “Usage Documentation”.
model_json_schema() Generates a JSON schema for a model class.
model_parametrized_name() Compute the class name for parametrizations of generic classes.
model_post_init() Override this method to perform additional initialization after __init__ and model_construct.
model_rebuild() Try to rebuild the pydantic-core schema for the model.
model_validate() Validate a pydantic model instance.
model_validate_json() !!! abstract “Usage Documentation”.
model_validate_strings() Validate the given object with string data against the Pydantic model.
parse_file()
parse_obj()
parse_raw()
pre_init()
schema()
schema_json()
schema_match()
update_forward_refs()
validate()
walk() Asynchronously walk through the directory and yield File objects.
walk_sync() Synchronously walk through the directory and yield File objects.

construct()

def construct(
    _fields_set: set[str] | None,
    values: Any,
) -> Self
Parameter Type
_fields_set set[str] | None
values Any

copy()

def copy(
    include: AbstractSetIntStr | MappingIntStrAny | None,
    exclude: AbstractSetIntStr | MappingIntStrAny | None,
    update: Dict[str, Any] | None,
    deep: bool,
) -> Self

Returns a copy of the model.

Deprecated

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
Parameter Type
include AbstractSetIntStr | MappingIntStrAny | None
exclude AbstractSetIntStr | MappingIntStrAny | None
update Dict[str, Any] | None
deep bool

dict()

def dict(
    include: IncEx | None,
    exclude: IncEx | None,
    by_alias: bool,
    exclude_unset: bool,
    exclude_defaults: bool,
    exclude_none: bool,
) -> Dict[str, Any]
Parameter Type
include IncEx | None
exclude IncEx | None
by_alias bool
exclude_unset bool
exclude_defaults bool
exclude_none bool

download()

def download(
    local_path: Optional[Union[str, Path]],
) -> str

Asynchronously download the entire directory to a local path.

Parameter Type
local_path Optional[Union[str, Path]]

download_sync()

def download_sync(
    local_path: Optional[Union[str, Path]],
) -> str

Synchronously download the entire directory to a local path.

Parameter Type
local_path Optional[Union[str, Path]]

exists()

def exists()

Asynchronously check if the directory exists.

Returns: True if the directory exists, False otherwise

Example: python if await directory.exists(): # Process the directory

exists_sync()

def exists_sync()

Synchronously check if the directory exists.

Returns: True if the directory exists, False otherwise

Example: python if directory.exists_sync(): # Process the directory

from_local()

def from_local(
    local_path: Union[str, Path],
    remote_path: Optional[str],
) -> Dir[T]

Asynchronously create a new Dir by uploading a local directory to the configured remote store.

Parameter Type
local_path Union[str, Path]
remote_path Optional[str]

from_local_sync()

def from_local_sync(
    local_path: Union[str, Path],
    remote_path: Optional[str],
) -> Dir[T]

Synchronously create a new Dir by uploading a local directory to the configured remote store.

Parameter Type
local_path Union[str, Path]
remote_path Optional[str]

from_orm()

def from_orm(
    obj: Any,
) -> Self
Parameter Type
obj Any

get_file()

def get_file(
    file_name: str,
) -> Optional[File[T]]

Asynchronously get a specific file from the directory.

Parameter Type
file_name str

get_file_sync()

def get_file_sync(
    file_name: str,
) -> Optional[File[T]]

Synchronously get a specific file from the directory.

Parameter Type
file_name str

json()

def json(
    include: IncEx | None,
    exclude: IncEx | None,
    by_alias: bool,
    exclude_unset: bool,
    exclude_defaults: bool,
    exclude_none: bool,
    encoder: Callable[[Any], Any] | None,
    models_as_dict: bool,
    dumps_kwargs: Any,
) -> str
Parameter Type
include IncEx | None
exclude IncEx | None
by_alias bool
exclude_unset bool
exclude_defaults bool
exclude_none bool
encoder Callable[[Any], Any] | None
models_as_dict bool
dumps_kwargs Any

list_files()

def list_files()

Asynchronously get a list of all files in the directory (non-recursive).

Returns: A list of File objects

Example: python files = await directory.list_files() for file in files: # Process the file

list_files_sync()

def list_files_sync()

Synchronously get a list of all files in the directory (non-recursive).

Returns: A list of File objects

Example: python files = directory.list_files_sync() for file in files: # Process the file

model_construct()

def model_construct(
    _fields_set: set[str] | None,
    values: Any,
) -> Self

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameter Type
_fields_set set[str] | None
values Any

model_copy()

def model_copy(
    update: Mapping[str, Any] | None,
    deep: bool,
) -> Self

!!! abstract “Usage Documentation” model_copy

Returns a copy of the model.

The underlying instance’s [__dict__][object.dict] attribute is copied. This might have unexpected side effects if you store anything in it, on top of the model fields (e.g. the value of [cached properties][functools.cached_property]).

Parameter Type
update Mapping[str, Any] | None
deep bool

model_dump()

def model_dump(
    mode: Literal['json', 'python'] | str,
    include: IncEx | None,
    exclude: IncEx | None,
    context: Any | None,
    by_alias: bool | None,
    exclude_unset: bool,
    exclude_defaults: bool,
    exclude_none: bool,
    round_trip: bool,
    warnings: bool | Literal['none', 'warn', 'error'],
    fallback: Callable[[Any], Any] | None,
    serialize_as_any: bool,
) -> dict[str, Any]

!!! abstract “Usage Documentation” model_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameter Type
mode Literal['json', 'python'] | str
include IncEx | None
exclude IncEx | None
context Any | None
by_alias bool | None
exclude_unset bool
exclude_defaults bool
exclude_none bool
round_trip bool
warnings bool | Literal['none', 'warn', 'error']
fallback Callable[[Any], Any] | None
serialize_as_any bool

model_dump_json()

def model_dump_json(
    indent: int | None,
    ensure_ascii: bool,
    include: IncEx | None,
    exclude: IncEx | None,
    context: Any | None,
    by_alias: bool | None,
    exclude_unset: bool,
    exclude_defaults: bool,
    exclude_none: bool,
    round_trip: bool,
    warnings: bool | Literal['none', 'warn', 'error'],
    fallback: Callable[[Any], Any] | None,
    serialize_as_any: bool,
) -> str

!!! abstract “Usage Documentation” model_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameter Type
indent int | None
ensure_ascii bool
include IncEx | None
exclude IncEx | None
context Any | None
by_alias bool | None
exclude_unset bool
exclude_defaults bool
exclude_none bool
round_trip bool
warnings bool | Literal['none', 'warn', 'error']
fallback Callable[[Any], Any] | None
serialize_as_any bool

model_json_schema()

def model_json_schema(
    by_alias: bool,
    ref_template: str,
    schema_generator: type[GenerateJsonSchema],
    mode: JsonSchemaMode,
) -> dict[str, Any]

Generates a JSON schema for a model class.

Parameter Type
by_alias bool
ref_template str
schema_generator type[GenerateJsonSchema]
mode JsonSchemaMode

model_parametrized_name()

def model_parametrized_name(
    params: tuple[type[Any], ...],
) -> str

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameter Type
params tuple[type[Any], ...]

model_post_init()

def model_post_init(
    context: Any,
)

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Parameter Type
context Any

model_rebuild()

def model_rebuild(
    force: bool,
    raise_errors: bool,
    _parent_namespace_depth: int,
    _types_namespace: MappingNamespace | None,
) -> bool | None

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameter Type
force bool
raise_errors bool
_parent_namespace_depth int
_types_namespace MappingNamespace | None

model_validate()

def model_validate(
    obj: Any,
    strict: bool | None,
    from_attributes: bool | None,
    context: Any | None,
    by_alias: bool | None,
    by_name: bool | None,
) -> Self

Validate a pydantic model instance.

Parameter Type
obj Any
strict bool | None
from_attributes bool | None
context Any | None
by_alias bool | None
by_name bool | None

model_validate_json()

def model_validate_json(
    json_data: str | bytes | bytearray,
    strict: bool | None,
    context: Any | None,
    by_alias: bool | None,
    by_name: bool | None,
) -> Self

!!! abstract “Usage Documentation” JSON Parsing

Validate the given JSON data against the Pydantic model.

Parameter Type
json_data str | bytes | bytearray
strict bool | None
context Any | None
by_alias bool | None
by_name bool | None

model_validate_strings()

def model_validate_strings(
    obj: Any,
    strict: bool | None,
    context: Any | None,
    by_alias: bool | None,
    by_name: bool | None,
) -> Self

Validate the given object with string data against the Pydantic model.

Parameter Type
obj Any
strict bool | None
context Any | None
by_alias bool | None
by_name bool | None

parse_file()

def parse_file(
    path: str | Path,
    content_type: str | None,
    encoding: str,
    proto: DeprecatedParseProtocol | None,
    allow_pickle: bool,
) -> Self
Parameter Type
path str | Path
content_type str | None
encoding str
proto DeprecatedParseProtocol | None
allow_pickle bool

parse_obj()

def parse_obj(
    obj: Any,
) -> Self
Parameter Type
obj Any

parse_raw()

def parse_raw(
    b: str | bytes,
    content_type: str | None,
    encoding: str,
    proto: DeprecatedParseProtocol | None,
    allow_pickle: bool,
) -> Self
Parameter Type
b str | bytes
content_type str | None
encoding str
proto DeprecatedParseProtocol | None
allow_pickle bool

pre_init()

def pre_init(
    data,
)
Parameter Type
data

schema()

def schema(
    by_alias: bool,
    ref_template: str,
) -> Dict[str, Any]
Parameter Type
by_alias bool
ref_template str

schema_json()

def schema_json(
    by_alias: bool,
    ref_template: str,
    dumps_kwargs: Any,
) -> str
Parameter Type
by_alias bool
ref_template str
dumps_kwargs Any

schema_match()

def schema_match(
    incoming: dict,
)
Parameter Type
incoming dict

update_forward_refs()

def update_forward_refs(
    localns: Any,
)
Parameter Type
localns Any

validate()

def validate(
    value: Any,
) -> Self
Parameter Type
value Any

walk()

def walk(
    recursive: bool,
    max_depth: Optional[int],
) -> AsyncIterator[File[T]]

Asynchronously walk through the directory and yield File objects.

Parameter Type
recursive bool
max_depth Optional[int]

walk_sync()

def walk_sync(
    recursive: bool,
    file_pattern: str,
    max_depth: Optional[int],
) -> Iterator[File[T]]

Synchronously walk through the directory and yield File objects.

Parameter Type
recursive bool
file_pattern str
max_depth Optional[int]

Properties

Property Type Description
model_extra None
Get extra fields set during validation.
Returns:
A dictionary of extra fields, or `None` if `config.extra` is not set to `"allow"`.

model_fields_set None
Returns the set of fields that have been explicitly set on this model instance.
Returns:
A set of strings representing the fields that have been set,

    i.e. that were not filled from defaults.

flyte.io.File

A generic file class representing a file with a specified format. Provides both async and sync interfaces for file operations. Users must handle all I/O operations themselves by instantiating this class with the appropriate class methods.

The generic type T represents the format of the file.

Example: ```python # Async usage from pandas import DataFrame csv_file = File DataFrame

async with csv_file.open() as f:
    content = await f.read()

# Sync alternative
with csv_file.open_sync() as f:
    content = f.read()
```

Example: Read a file input in a Task.

@env.task
async def my_task(file: File[DataFrame]):
    async with file.open() as f:
        df = pd.read_csv(f)

Example: Write a file by streaming it directly to blob storage

@env.task
async def my_task() -> File[DataFrame]:
    df = pd.DataFrame(...)
    file = File.new_remote()
    async with file.open("wb") as f:
        df.to_csv(f)
    # No additional uploading will be done here.
    return file

Example: Write a file by writing it locally first, and then uploading it.

@env.task
async def my_task() -> File[DataFrame]:
    # write to /tmp/data.csv
    return File.from_local("/tmp/data.csv", optional="s3://my-bucket/data.csv")

Example: From an existing remote file

@env.task
async def my_task() -> File[DataFrame]:
    return File.from_existing_remote("s3://my-bucket/data.csv")

Example: Take a remote file as input and return the same one, should not do any copy

@env.task
async def my_task(file: File[DataFrame]) -> File[DataFrame]:
    return file
class File(
    data: Any,
)

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.

self is explicitly positional-only to allow self as a field name.

Parameter Type
data Any

Methods

Method Description
construct()
copy() Returns a copy of the model.
dict()
download() Asynchronously download the file to a local path.
exists_sync() Synchronously check if the file exists.
from_existing_remote() Create a File reference from an existing remote file.
from_local() Create a new File object from a local file that will be uploaded to the configured remote store.
from_orm()
json()
model_construct() Creates a new instance of the Model class with validated data.
model_copy() !!! abstract “Usage Documentation”.
model_dump() !!! abstract “Usage Documentation”.
model_dump_json() !!! abstract “Usage Documentation”.
model_json_schema() Generates a JSON schema for a model class.
model_parametrized_name() Compute the class name for parametrizations of generic classes.
model_post_init() Override this method to perform additional initialization after __init__ and model_construct.
model_rebuild() Try to rebuild the pydantic-core schema for the model.
model_validate() Validate a pydantic model instance.
model_validate_json() !!! abstract “Usage Documentation”.
model_validate_strings() Validate the given object with string data against the Pydantic model.
new_remote() Create a new File reference for a remote file that will be written to.
open() Asynchronously open the file and return a file-like object.
open_sync() Synchronously open the file and return a file-like object.
parse_file()
parse_obj()
parse_raw()
pre_init()
schema()
schema_json()
schema_match()
update_forward_refs()
validate()

construct()

def construct(
    _fields_set: set[str] | None,
    values: Any,
) -> Self
Parameter Type
_fields_set set[str] | None
values Any

copy()

def copy(
    include: AbstractSetIntStr | MappingIntStrAny | None,
    exclude: AbstractSetIntStr | MappingIntStrAny | None,
    update: Dict[str, Any] | None,
    deep: bool,
) -> Self

Returns a copy of the model.

Deprecated

This method is now deprecated; use model_copy instead.

If you need include or exclude, use:

data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
Parameter Type
include AbstractSetIntStr | MappingIntStrAny | None
exclude AbstractSetIntStr | MappingIntStrAny | None
update Dict[str, Any] | None
deep bool

dict()

def dict(
    include: IncEx | None,
    exclude: IncEx | None,
    by_alias: bool,
    exclude_unset: bool,
    exclude_defaults: bool,
    exclude_none: bool,
) -> Dict[str, Any]
Parameter Type
include IncEx | None
exclude IncEx | None
by_alias bool
exclude_unset bool
exclude_defaults bool
exclude_none bool

download()

def download(
    local_path: Optional[Union[str, Path]],
) -> str

Asynchronously download the file to a local path.

Parameter Type
local_path Optional[Union[str, Path]]

exists_sync()

def exists_sync()

Synchronously check if the file exists.

Returns: True if the file exists, False otherwise

Example: python if file.exists_sync(): # Process the file

from_existing_remote()

def from_existing_remote(
    remote_path: str,
) -> File[T]

Create a File reference from an existing remote file.

Example:

@env.task
async def my_task() -> File[DataFrame]:
    return File.from_existing_remote("s3://my-bucket/data.csv")
Parameter Type
remote_path str

from_local()

def from_local(
    local_path: Union[str, Path],
    remote_destination: Optional[str],
) -> File[T]

Create a new File object from a local file that will be uploaded to the configured remote store.

Parameter Type
local_path Union[str, Path]
remote_destination Optional[str]

from_orm()

def from_orm(
    obj: Any,
) -> Self
Parameter Type
obj Any

json()

def json(
    include: IncEx | None,
    exclude: IncEx | None,
    by_alias: bool,
    exclude_unset: bool,
    exclude_defaults: bool,
    exclude_none: bool,
    encoder: Callable[[Any], Any] | None,
    models_as_dict: bool,
    dumps_kwargs: Any,
) -> str
Parameter Type
include IncEx | None
exclude IncEx | None
by_alias bool
exclude_unset bool
exclude_defaults bool
exclude_none bool
encoder Callable[[Any], Any] | None
models_as_dict bool
dumps_kwargs Any

model_construct()

def model_construct(
    _fields_set: set[str] | None,
    values: Any,
) -> Self

Creates a new instance of the Model class with validated data.

Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.

model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == 'allow', then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == 'ignore' (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == 'forbid' does not result in an error if extra values are passed, but they will be ignored.

Parameter Type
_fields_set set[str] | None
values Any

model_copy()

def model_copy(
    update: Mapping[str, Any] | None,
    deep: bool,
) -> Self

!!! abstract “Usage Documentation” model_copy

Returns a copy of the model.

The underlying instance’s [__dict__][object.dict] attribute is copied. This might have unexpected side effects if you store anything in it, on top of the model fields (e.g. the value of [cached properties][functools.cached_property]).

Parameter Type
update Mapping[str, Any] | None
deep bool

model_dump()

def model_dump(
    mode: Literal['json', 'python'] | str,
    include: IncEx | None,
    exclude: IncEx | None,
    context: Any | None,
    by_alias: bool | None,
    exclude_unset: bool,
    exclude_defaults: bool,
    exclude_none: bool,
    round_trip: bool,
    warnings: bool | Literal['none', 'warn', 'error'],
    fallback: Callable[[Any], Any] | None,
    serialize_as_any: bool,
) -> dict[str, Any]

!!! abstract “Usage Documentation” model_dump

Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.

Parameter Type
mode Literal['json', 'python'] | str
include IncEx | None
exclude IncEx | None
context Any | None
by_alias bool | None
exclude_unset bool
exclude_defaults bool
exclude_none bool
round_trip bool
warnings bool | Literal['none', 'warn', 'error']
fallback Callable[[Any], Any] | None
serialize_as_any bool

model_dump_json()

def model_dump_json(
    indent: int | None,
    ensure_ascii: bool,
    include: IncEx | None,
    exclude: IncEx | None,
    context: Any | None,
    by_alias: bool | None,
    exclude_unset: bool,
    exclude_defaults: bool,
    exclude_none: bool,
    round_trip: bool,
    warnings: bool | Literal['none', 'warn', 'error'],
    fallback: Callable[[Any], Any] | None,
    serialize_as_any: bool,
) -> str

!!! abstract “Usage Documentation” model_dump_json

Generates a JSON representation of the model using Pydantic’s to_json method.

Parameter Type
indent int | None
ensure_ascii bool
include IncEx | None
exclude IncEx | None
context Any | None
by_alias bool | None
exclude_unset bool
exclude_defaults bool
exclude_none bool
round_trip bool
warnings bool | Literal['none', 'warn', 'error']
fallback Callable[[Any], Any] | None
serialize_as_any bool

model_json_schema()

def model_json_schema(
    by_alias: bool,
    ref_template: str,
    schema_generator: type[GenerateJsonSchema],
    mode: JsonSchemaMode,
) -> dict[str, Any]

Generates a JSON schema for a model class.

Parameter Type
by_alias bool
ref_template str
schema_generator type[GenerateJsonSchema]
mode JsonSchemaMode

model_parametrized_name()

def model_parametrized_name(
    params: tuple[type[Any], ...],
) -> str

Compute the class name for parametrizations of generic classes.

This method can be overridden to achieve a custom naming scheme for generic BaseModels.

Parameter Type
params tuple[type[Any], ...]

model_post_init()

def model_post_init(
    context: Any,
)

Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.

Parameter Type
context Any

model_rebuild()

def model_rebuild(
    force: bool,
    raise_errors: bool,
    _parent_namespace_depth: int,
    _types_namespace: MappingNamespace | None,
) -> bool | None

Try to rebuild the pydantic-core schema for the model.

This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.

Parameter Type
force bool
raise_errors bool
_parent_namespace_depth int
_types_namespace MappingNamespace | None

model_validate()

def model_validate(
    obj: Any,
    strict: bool | None,
    from_attributes: bool | None,
    context: Any | None,
    by_alias: bool | None,
    by_name: bool | None,
) -> Self

Validate a pydantic model instance.

Parameter Type
obj Any
strict bool | None
from_attributes bool | None
context Any | None
by_alias bool | None
by_name bool | None

model_validate_json()

def model_validate_json(
    json_data: str | bytes | bytearray,
    strict: bool | None,
    context: Any | None,
    by_alias: bool | None,
    by_name: bool | None,
) -> Self

!!! abstract “Usage Documentation” JSON Parsing

Validate the given JSON data against the Pydantic model.

Parameter Type
json_data str | bytes | bytearray
strict bool | None
context Any | None
by_alias bool | None
by_name bool | None

model_validate_strings()

def model_validate_strings(
    obj: Any,
    strict: bool | None,
    context: Any | None,
    by_alias: bool | None,
    by_name: bool | None,
) -> Self

Validate the given object with string data against the Pydantic model.

Parameter Type
obj Any
strict bool | None
context Any | None
by_alias bool | None
by_name bool | None

new_remote()

def new_remote()

Create a new File reference for a remote file that will be written to.

Example:

@env.task
async def my_task() -> File[DataFrame]:
    df = pd.DataFrame(...)
    file = File.new_remote()
    async with file.open("wb") as f:
        df.to_csv(f)
    return file

open()

def open(
    mode: str,
    block_size: Optional[int],
    cache_type: str,
    cache_options: Optional[dict],
    compression: Optional[str],
    kwargs,
) -> AsyncGenerator[IO[Any]]

Asynchronously open the file and return a file-like object.

Parameter Type
mode str
block_size Optional[int]
cache_type str
cache_options Optional[dict]
compression Optional[str]
kwargs **kwargs

open_sync()

def open_sync(
    mode: str,
    block_size: Optional[int],
    cache_type: str,
    cache_options: Optional[dict],
    compression: Optional[str],
    kwargs,
) -> Generator[IO[Any]]

Synchronously open the file and return a file-like object.

Parameter Type
mode str
block_size Optional[int]
cache_type str
cache_options Optional[dict]
compression Optional[str]
kwargs **kwargs

parse_file()

def parse_file(
    path: str | Path,
    content_type: str | None,
    encoding: str,
    proto: DeprecatedParseProtocol | None,
    allow_pickle: bool,
) -> Self
Parameter Type
path str | Path
content_type str | None
encoding str
proto DeprecatedParseProtocol | None
allow_pickle bool

parse_obj()

def parse_obj(
    obj: Any,
) -> Self
Parameter Type
obj Any

parse_raw()

def parse_raw(
    b: str | bytes,
    content_type: str | None,
    encoding: str,
    proto: DeprecatedParseProtocol | None,
    allow_pickle: bool,
) -> Self
Parameter Type
b str | bytes
content_type str | None
encoding str
proto DeprecatedParseProtocol | None
allow_pickle bool

pre_init()

def pre_init(
    data,
)
Parameter Type
data

schema()

def schema(
    by_alias: bool,
    ref_template: str,
) -> Dict[str, Any]
Parameter Type
by_alias bool
ref_template str

schema_json()

def schema_json(
    by_alias: bool,
    ref_template: str,
    dumps_kwargs: Any,
) -> str
Parameter Type
by_alias bool
ref_template str
dumps_kwargs Any

schema_match()

def schema_match(
    incoming: dict,
)
Parameter Type
incoming dict

update_forward_refs()

def update_forward_refs(
    localns: Any,
)
Parameter Type
localns Any

validate()

def validate(
    value: Any,
) -> Self
Parameter Type
value Any

Properties

Property Type Description
model_extra None
Get extra fields set during validation.
Returns:
A dictionary of extra fields, or `None` if `config.extra` is not set to `"allow"`.

model_fields_set None
Returns the set of fields that have been explicitly set on this model instance.
Returns:
A set of strings representing the fields that have been set,

    i.e. that were not filled from defaults.