1.16.10

flytekit.extras.sklearn.native

Directory

Classes

Class Description
SklearnEstimatorTransformer Base transformer type that should be implemented for every python native type that can be handled by flytekit.
SklearnTypeTransformer Base transformer type that should be implemented for every python native type that can be handled by flytekit.

Variables

Property Type Description
T TypeVar

flytekit.extras.sklearn.native.SklearnEstimatorTransformer

Base transformer type that should be implemented for every python native type that can be handled by flytekit

def SklearnEstimatorTransformer()

Methods

Method Description
assert_type()
from_binary_idl() This function primarily handles deserialization for untyped dicts, dataclasses, Pydantic BaseModels, and attribute access.
from_generic_idl() TODO: Support all Flyte Types.
get_literal_type() Converts the python type to a Flyte LiteralType.
guess_python_type() Converts the Flyte LiteralType to a python object type.
isinstance_generic()
to_html() Converts any python val (dataframe, int, float) to a html string, and it will be wrapped in the HTML div.
to_literal() Converts a given python_val to a Flyte Literal, assuming the given python_val matches the declared python_type.
to_python_value() Converts the given Literal to a Python Type.

assert_type()

def assert_type(
    t: Type[T],
    v: T,
)
Parameter Type Description
t Type[T]
v T

from_binary_idl()

def from_binary_idl(
    binary_idl_object: Binary,
    expected_python_type: Type[T],
) -> Optional[T]

This function primarily handles deserialization for untyped dicts, dataclasses, Pydantic BaseModels, and attribute access.`

For untyped dict, dataclass, and pydantic basemodel: Life Cycle (Untyped Dict as example): python val -> msgpack bytes -> binary literal scalar -> msgpack bytes -> python val (to_literal) (from_binary_idl)

For attribute access: Life Cycle: python val -> msgpack bytes -> binary literal scalar -> resolved golang value -> binary literal scalar -> msgpack bytes -> python val (to_literal) (propeller attribute access) (from_binary_idl)

Parameter Type Description
binary_idl_object Binary
expected_python_type Type[T]

from_generic_idl()

def from_generic_idl(
    generic: Struct,
    expected_python_type: Type[T],
) -> Optional[T]

TODO: Support all Flyte Types. This is for dataclass attribute access from input created from the Flyte Console.

Note:

  • This can be removed in the future when the Flyte Console support generate Binary IDL Scalar as input.
Parameter Type Description
generic Struct
expected_python_type Type[T]

get_literal_type()

def get_literal_type(
    t: typing.Type[~T],
) -> flytekit.models.types.LiteralType

Converts the python type to a Flyte LiteralType

Parameter Type Description
t typing.Type[~T]

guess_python_type()

def guess_python_type(
    literal_type: flytekit.models.types.LiteralType,
) -> typing.Type[sklearn.base.BaseEstimator]

Converts the Flyte LiteralType to a python object type.

Parameter Type Description
literal_type flytekit.models.types.LiteralType

isinstance_generic()

def isinstance_generic(
    obj,
    generic_alias,
)
Parameter Type Description
obj
generic_alias

to_html()

def to_html(
    ctx: FlyteContext,
    python_val: T,
    expected_python_type: Type[T],
) -> str

Converts any python val (dataframe, int, float) to a html string, and it will be wrapped in the HTML div

Parameter Type Description
ctx FlyteContext
python_val T
expected_python_type Type[T]

to_literal()

def to_literal(
    ctx: flytekit.core.context_manager.FlyteContext,
    python_val: ~T,
    python_type: typing.Type[~T],
    expected: flytekit.models.types.LiteralType,
) -> flytekit.models.literals.Literal

Converts a given python_val to a Flyte Literal, assuming the given python_val matches the declared python_type. Implementers should refrain from using type(python_val) instead rely on the passed in python_type. If these do not match (or are not allowed) the Transformer implementer should raise an AssertionError, clearly stating what was the mismatch

Parameter Type Description
ctx flytekit.core.context_manager.FlyteContext A FlyteContext, useful in accessing the filesystem and other attributes
python_val ~T The actual value to be transformed
python_type typing.Type[~T] The assumed type of the value (this matches the declared type on the function)
expected flytekit.models.types.LiteralType Expected Literal Type

to_python_value()

def to_python_value(
    ctx: flytekit.core.context_manager.FlyteContext,
    lv: flytekit.models.literals.Literal,
    expected_python_type: typing.Type[~T],
) -> ~T

Converts the given Literal to a Python Type. If the conversion cannot be done an AssertionError should be raised

Parameter Type Description
ctx flytekit.core.context_manager.FlyteContext FlyteContext
lv flytekit.models.literals.Literal The received literal Value
expected_python_type typing.Type[~T] Expected native python type that should be returned

Properties

Property Type Description
is_async
name
python_type
This returns the python type
type_assertions_enabled
Indicates if the transformer wants type assertions to be enabled at the core type engine layer

flytekit.extras.sklearn.native.SklearnTypeTransformer

Base transformer type that should be implemented for every python native type that can be handled by flytekit

class SklearnTypeTransformer(
    name: str,
    t: Type[T],
    enable_type_assertions: bool,
)
Parameter Type Description
name str
t Type[T]
enable_type_assertions bool

Methods

Method Description
assert_type()
from_binary_idl() This function primarily handles deserialization for untyped dicts, dataclasses, Pydantic BaseModels, and attribute access.
from_generic_idl() TODO: Support all Flyte Types.
get_literal_type() Converts the python type to a Flyte LiteralType.
guess_python_type() Converts the Flyte LiteralType to a python object type.
isinstance_generic()
to_html() Converts any python val (dataframe, int, float) to a html string, and it will be wrapped in the HTML div.
to_literal() Converts a given python_val to a Flyte Literal, assuming the given python_val matches the declared python_type.
to_python_value() Converts the given Literal to a Python Type.

assert_type()

def assert_type(
    t: Type[T],
    v: T,
)
Parameter Type Description
t Type[T]
v T

from_binary_idl()

def from_binary_idl(
    binary_idl_object: Binary,
    expected_python_type: Type[T],
) -> Optional[T]

This function primarily handles deserialization for untyped dicts, dataclasses, Pydantic BaseModels, and attribute access.`

For untyped dict, dataclass, and pydantic basemodel: Life Cycle (Untyped Dict as example): python val -> msgpack bytes -> binary literal scalar -> msgpack bytes -> python val (to_literal) (from_binary_idl)

For attribute access: Life Cycle: python val -> msgpack bytes -> binary literal scalar -> resolved golang value -> binary literal scalar -> msgpack bytes -> python val (to_literal) (propeller attribute access) (from_binary_idl)

Parameter Type Description
binary_idl_object Binary
expected_python_type Type[T]

from_generic_idl()

def from_generic_idl(
    generic: Struct,
    expected_python_type: Type[T],
) -> Optional[T]

TODO: Support all Flyte Types. This is for dataclass attribute access from input created from the Flyte Console.

Note:

  • This can be removed in the future when the Flyte Console support generate Binary IDL Scalar as input.
Parameter Type Description
generic Struct
expected_python_type Type[T]

get_literal_type()

def get_literal_type(
    t: typing.Type[~T],
) -> flytekit.models.types.LiteralType

Converts the python type to a Flyte LiteralType

Parameter Type Description
t typing.Type[~T]

guess_python_type()

def guess_python_type(
    literal_type: flytekit.models.types.LiteralType,
) -> typing.Type[~T]

Converts the Flyte LiteralType to a python object type.

Parameter Type Description
literal_type flytekit.models.types.LiteralType

isinstance_generic()

def isinstance_generic(
    obj,
    generic_alias,
)
Parameter Type Description
obj
generic_alias

to_html()

def to_html(
    ctx: FlyteContext,
    python_val: T,
    expected_python_type: Type[T],
) -> str

Converts any python val (dataframe, int, float) to a html string, and it will be wrapped in the HTML div

Parameter Type Description
ctx FlyteContext
python_val T
expected_python_type Type[T]

to_literal()

def to_literal(
    ctx: flytekit.core.context_manager.FlyteContext,
    python_val: ~T,
    python_type: typing.Type[~T],
    expected: flytekit.models.types.LiteralType,
) -> flytekit.models.literals.Literal

Converts a given python_val to a Flyte Literal, assuming the given python_val matches the declared python_type. Implementers should refrain from using type(python_val) instead rely on the passed in python_type. If these do not match (or are not allowed) the Transformer implementer should raise an AssertionError, clearly stating what was the mismatch

Parameter Type Description
ctx flytekit.core.context_manager.FlyteContext A FlyteContext, useful in accessing the filesystem and other attributes
python_val ~T The actual value to be transformed
python_type typing.Type[~T] The assumed type of the value (this matches the declared type on the function)
expected flytekit.models.types.LiteralType Expected Literal Type

to_python_value()

def to_python_value(
    ctx: flytekit.core.context_manager.FlyteContext,
    lv: flytekit.models.literals.Literal,
    expected_python_type: typing.Type[~T],
) -> ~T

Converts the given Literal to a Python Type. If the conversion cannot be done an AssertionError should be raised

Parameter Type Description
ctx flytekit.core.context_manager.FlyteContext FlyteContext
lv flytekit.models.literals.Literal The received literal Value
expected_python_type typing.Type[~T] Expected native python type that should be returned

Properties

Property Type Description
is_async
name
python_type
This returns the python type
type_assertions_enabled
Indicates if the transformer wants type assertions to be enabled at the core type engine layer